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Abstract

The triboelastic approach developed earlier is applied to a set of well-known structure—property relations of elasto-
mers whose structural mechanisms remain debated topics until now. Predictive calculations gained through the tribo-
elastic approach demonstrate good agreement with the accumulated experience and with it they present a new insight
into certain as yet unclear mechanisms. The area of application of the proposed approach is examined.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is common knowledge that solid tiny particles of a micron size or less incorporated into a rubbery
matrix increase considerably the modulus and tensile strength of such particulate composites.

The mechanism of this effect discovered in the early 20th century and thereafter widely used in industry is
not entirely known (Kraus, 1977; Mullins, 1969; Payne and Whittaker, 1972; Voet, 1980; Edwards, 1990).
In spite of huge experience gained by chemists, physicists and mechanicians in a search for its foundation, it
remains at a level of qualitative explanations not substantiated by appropriate mathematical modeling. It is
of interest to note that chemists usually explain this phenomenon as reinforcement of the rubber with layers
contacting with solid particles (Voet, 1980). Mechanicians believe that reinforcement is a manifestation of
the growing resistance to crack propagation caused by the presence of filler particles (Smith, 1977).
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Physicists suppose that the effect arises from the aptitude of the rubber molecules, adsorbed by the filler
surface, to keep integrity under strain through moving along the interface zone and thus increasing the total
number of the resistant structural elements of the composite system (Alexandrov and Lazurkin, 1944, Dan-
nenberg, 1966, Rigbi, 1980, Kraus, 1977; Soos, 1984; Medalia, 1987; Edwards, 1990). The substructure of
the elastomer and filler arrangement and its influence on the mechanical properties of composites have been
examined by Sharaf and Mark (2002), Vacatello (2002, 2003) and Nakatani et al. (2001).

In a recent paper Moshev and Evlampieva (2003) tried to develop a mathematical model of reinforce-
ment, based on the latter foundation offered by physicists. Accepting their ideas, as a background for sim-
ulating the reinforcement phenomenon, a rather rough triboelastic mathematical model of a structural unit
has been developed and reported (Moshev and Evlampieva, 2003) with a couple of illustrative examples
demonstrating good qualitative agreement between theory and practice. This has awakened an interest
in enhancing the model potentiality and in establishing the range of its applicability.

The refined variant of the model, examined in this paper, is based on three-dimensional representation. It
allows comparison with a great body of experimental data taking into account the volume loading and the
size of filler particles. Additionally, it examines some experimental observations that still require
clarification.

2. Theoretical background and model characterization

The model reported by Moshev and Evlampieva, 2003 is based on two major premises. The first takes
into account the geometrical peculiarities of the well-reinforced rubbery composites. It assumes that the size
of filler particles is so small and their number is so great that the mean spaces between the neighboring par-
ticles become appreciably shorter than the contour length of rubber macromolecules. Under such condition
one macromolecule can be adsorbed by several adjacent particles forming links between them. The second
premise is of physical nature. It considers the behavior of rubber chain as a non-Gaussian one with the up-
turns due to finite chain extensibility.

Hence the geometry of a unit cell of the model in the initial state (Fig. 1a) might be represented as some
length, Ly, of a spring simulating a rubber molecule lying along two substrates, U, in lengths, simulating
the surfaces of the adjacent filler particles and the space, L,, between them.

It is assumed that the spring is retained on the surface of substrates by the adhesive forces throughout its
length with the ends fixed to the outer positions of the substrates. Applying some tensile effort to substrates,
as shown in Fig. 1b, results in stretching the elastic bridge L, with some additional portion of the spring slid
off the substrates into a gap between them. Further increase in the tensile force induces enlarged slipping off
the spring from the substrates into the bridge between them (Fig. 1c and d) until the sliding area reaches the
outer ends of the model. Then both dragged and proper elastic resistances of the spring come into play till
the most loaded gap part of the spring breaks down.
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Fig. 1. Geometry of the linearized structural cell.
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Two operators govern the mechanical behavior of the model. The first one simulates the highly non-lin-
ear elastic resistance of rubber macromolecules as follows

A= /Lo(Cthf —1/f) + 1.0, (1)

where 1 is the elongation of the spring, L is the length of the spring measured in a number of the virtual
segmental units, f'is some undefined (arbitrary) measure of the tensile force. Thus the deformation of the
spring, ¢, can be defined as

&= /Lo(Cthf —1/1). 2)
The spring is assumed to break down, when tensile force reaches a limiting value equal to 20.0 that cor-
responds to 0.95 of the spring maximum stretch.

The second operator simulates the adhesive bond strength at the spring—substrate interface. It is repre-
sented as

S =Tu, (3)

where u is the length of the substrate - spring contact, 7 is the specific adhesive bond strength taken as some
constant magnitude per unit of substrate length. If f'< Tu, no sliding occurs.

These premises and computing procedures concerning the stress-strain relations have been described in
detail earlier (Moshev and Evlampieva (2003)). Such linear model has demonstrated rather convincingly its
predictive power.

Further research has shown that a slight refinement of the linear model allows expanding its predictive
capacities to a three-dimensional structural representation. With this in mind, an isometric regular hexahe-
dral prism, with a filler particle put at the center (Fig. 2a), has been adopted as a representative structural
unit for the volumetric representation. The isometric configuration, allowing close packing of structural
units, seems most suitable for latter case.

Carbon black as a typical industrial filler has been chosen for the following analysis. Experience evi-
dences that carbon black particles have the irregular dendrite-like shape, which is commonly modeled by
the so-called equivalent diameter, D,, determined experimentally by transmission electron micrography
or through specific area measurements. In such cases, D, can be regarded as some spherical substitute aver-
aging the complicated real shape of the branched carbon black aggregates. The magnitude D, ranges ordi-
narily between 20 and 40 nm (Boonstra, 1979).

If the filler particle with diameter D, touches the cell boundaries (Fig. 2a), then this structural unit can be
regarded as that having the maximum packing density with the minimum volume, Vy,;,, equal to

Viin = (V3/2)D3. @)
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Fig. 2. Geometry of the three-dimensional structural cell.
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The volume of the filler particle, V5, inside Vi, is obtained by multiplying Vi, by the maximum volume
fraction, @n.x, specified for a given carbon black type

V= (\/g/z)Dz(pmax (5)

The magnitude of ¢,.x is Obtained experimentally, more often by means of the so-called dibutylphtalate
absorption test (DBPA).

Pmax = 0.543/(0.543 + DBPA),

where DBPA is a volume of dibutylphtalate needed for filling the voids in 1 g of the pelleted carbon black.
Because of the irregular shape of carbon black aggregates, ¢n.x generally does not exceed 0.4 (Medalia,
1987) in contrast to 0.64 for randomly arranged uniform spherical particles.

In the close packing composed of the cells having minimum volume, the filler particles are in touch with
each other with a zero gap between them. Since the solid volume fraction @in commonly used rubbers is
always lower than ¢, (about 0.15-0.3), in actual composites, the filler particles are separated from each
other by some spaces, / (Fig. 2b).

It can be shown that for the adopted geometry of the structural cell

h= Da(((pmax/(p)l/3 - 1) (6)

This expression connects the linear parameter / with its three-dimensional counterpart ¢. Identifying 4 of
Fig. 2b with the gapL, in the one-dimensional model of Fig. 1 provides a basis for using the capabilities of
the simple linear model for predicting some important properties of composites as functions of the filler
volume fraction ¢. Herewith the A-length expressed in nm should be replaced by the L,-length expressed
in segmental units

L, = h/Lsega (7)

where L, is the length of the macromolecular segment.

An increment in the length of the model during extension is formed as a sum of the current elastic bridge
length, L,, and the portion of the spring pulled out of the substrates. Calculation techniques of the exten-
sion curve are described elsewhere (Moshev and Evlampieva, 2003).

From Fig. 2 it follows that the stress, g, in the hexahedral cell under a tensile force, f, is determined as

a=f/S, (8)
where S is the cross-section area of the cell.
S = (\/3/2)(D, + h)*. (9)
Now the current modulus of the cell, E, defined as some secant magnitude, can be calculated.
E=og/e. (10)

Since ¢ is strongly non-linear, the modulus magnitude becomes a variable as well.

3. Some experimental observations viewed as manifestations of triboelastic structural rearrangements
3.1. Initial modulus reinforcement as a function of the filler volume fraction
For a long time, an unexpectedly high experimental initial modulus, E, of carbon black filled rubbers

cannot find satisfactory theoretical explanation. Calculations taking into account only the hydrodynamic
effect of reinforcement give the values of E, that are much below the experimental results. The theoretical
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amendments offered have also appeared insufficient for filler volume fractions above 0.1 (Fedors, 1979). At
present the problem seems to be still unsolved, experimentalists restrict themselves to qualitative assump-
tions (Harwood et al., 1969; Meinecke and Maksin, 1981). Most likely, these difficulties come from the at-
tempts to seek for the solution of the problem on generally recognized hydrodynamic grounds.

The fact that drastically increased rigidity appears in systems having very fine particles at rather high
volume loading safely suggests that this phenomenon has a direct relationship to the geometrical peculiarity
of the system. Obviously, the point is that the rubbery layers connecting the adjacent filler particles become
smaller than the mean size of rubber molecules and their mechanical behavior cannot longer be represented
by the rubber bulk properties. Hence modeling such systems should take into account this rubber peculiarity.

The structural model outlined above allows testing the latter approach. By way of illustration let us
examine a typical compound containing High Abrasion Furnace (HAF) carbon black (¢max = 0.33,
D,=40nm) and a common hydrocarbon rubber (Ly, = 2.0 nm).

Substituting these data into Eq. (6), one gets the dependence of a space / in nm between the adjacent
particles on the filler volume fraction gpand the same value in segmental units.

The initial modulus, E,, represents the response of the system relative to its virgin state. Hence it can be
defined through the given D,, & and L, values by the expression

6
B Ao o

where /1 is found as a function of ¢ by Eq. (6) with the resistance f of bridges L, connecting adjacent par-
ticles (Eq. (7)).

Theoretical expression (11) cannot be evaluated directly through experimental checking because it rep-
resents Ey via arbitrary unit of force. Hence a fitting multiplier is needed for comparison of experimental
and calculated data. Shifting E, values along the logarithmic E, scale can readily do such procedure.

Fig. 3 presents the designed curves for HAF carbon (solid line) and for experimental data demonstrated
by Fedors (1979) (crosses). It is evident that the theoretical estimations agree well with the experimental
results in the range of high reinforcements being the subject of discussion.

25
20 C -
£
£ i
g,
o 15
2 4/
E -
= +/
: /‘"/
o i
2
E 05
[} X
v -+
J  d
+
0.0 T T T T
00 01 02 03 04

Carbon black volume fraction

Fig. 3. Initial modulus versus filler volume fraction.
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Thus, it may be safely suggested that the drastically increased initial stiffness of rubber composites at
higher volume filling results from very high stiffness of the short molecular chains connecting the adjacent
filler particles in the virgin state of the system. Their rigidity is vastly greater than the rigidity characteristic
of the bulk gum rubber.

3.2. Initial modulus reinforcement as a function of the filler particle size

As follows from Eq. (6), the mean spaces between particles are dependent not only on their volume frac-
tion but also on the diameters of filler particles. With ¢ held constant, the smaller is the size of particles, the
lesser becomes the space between them, and, consequently, the shorter the molecular chains connecting par-
ticles. Therefore, the filler size diminution alone should increase the initial modulus of rubber composites.

This effect was demonstrated by Alter (1956), who generalized the available experimental data concern-
ing this point for various filler sizes at various volume fractions. According to Alter’s results, the effect is
typical of small particles having diameters less than 200 nm. The increase in the modulus becomes greater
at higher filler concentrations. A marked influence of the size of filler on the modulus was experimentally
established likewise by Schwarzl et al. (1970).

The computed dependence of the initial modulus (in arbitrary units) on the diameter of filler particles
(for input parameters of Section 3.1) is shown in Fig. 4. It demonstrates the slackening of dependency with
size of particles and with decrease in filler concentration, which agrees well with experimental observations.

3.3. Reinforcement as a function of the bond strength

In Sections 3.1 and 3.2, two structural sources of high initial modulus in particulate composites are
examined. They are: (1) small size and rather high volume fraction of structural elements and (2) short mac-
romolecular chains connecting the adjacent filler particles. However, as soon as the interface sliding begins,
one more factor, i.e., the adhesive strength, T, enters into action. It predetermines the evolution of the al-
ready framed initial modulus of composites. Fig. 5 illustrates importance of this factor with reference to a
rubbery (Lsg = 1.5) composite loaded with 25% by volume HAF black (D, = 30 nm, ¢max = 0.352). The
tensile curves of individual cells for adhesive strengths varying from 0.1 to 10 have been calculated.
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Fig. 4. Initial modulus versus size of filler particles at various filler volume fractions (indicated near the curves).



V.V. Moshev, S.E. Evlampieva | International Journal of Solids and Structures 42 (2005) 5129-5139 5135

10.0 8.06.0 4.0 2.5 2.0

16'00_ // v Z
i

1200
7

1,

/

:
S
AVARNNN

- // | 05
——/
000 T T T T
000 1.00 200 300 400 500

Strain

Fig. 5. Tensile curves of the structural cell at various adhesive strengths (indicated near the curves).

Fig. 5 demonstrates that, generally, the growth of T helps in maintaining the magnitude of the initial
modulus. The growth of T from 0.1 up to 2 does not influence breaking deformations, which remain close
to maximum 4.5, in this instance. However, at higher adhesive strengths, breaking strains start quick going
down.

Real composites are randomly composed systems with cells varying in a local filler volume fraction. The
ultimate stresses and strains of individual cells are distributed around specified mean values. The tensile
curves of the objects including a multitude of random structural cells become random as well including their
breaking efforts, fi,, and strains, é&.

To clarify this point, a discrete model composed of inhomogeneous structural cells has been developed
like that examined earlier by Moshev and Evlampieva (1997). This model is a representative of the so-called
bundle systems (Hansen and Hemmer, 1998). It consists of M cross-sections connected in tandem, each
cross-section representing a bundle of N parallel random cells clamped at both ends. According to Moshev
and Garishin (1993), a non-uniform distribution close to the normal law has been synthesized for samples
completed with random structural cells.

As an illustration, random samples have been composed for M = 3 and N = 3. Tensile curves, based on
the input data of Fig. 5, have been calculated for various 7 values in the interval from 0.3 up to 10.0.

Fig. 6 depicts &,—T, f,—T and &,—f,, relationships. It is seen that the maximum breaking effort (about 16.0)
together with the maximum breaking deformation (about 3.5) correspond to the intermediate value of 7'
about 2.0. These results agree well with experimental data gained by Edwards and Fischer (1973) and Voet
(1980).

The interrelation e,y is in the qualitative consent with the experimental failure envelope demonstrated
by Smith (1977). Triboelastic treatment makes clearer the physical essence of this relation. The increasing 7'
in numerical experiments simulates decreasing temperature or increasing rate of extension in realistic tests.

3.4. Payne effect

In the early seventies, Payne and Whittaker (1972) demonstrated data on cyclic deformation of HAF
black filled butyl rubber. A nearly constant high elastic modulus is observed at very small strain amplitudes
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Fig. 6. Failure curves for ¢, and f;, versus 7 bond strength.

of less than 0.1%. It drops rapidly beyond 1%. However, at strain amplitudes beyond 10% modulus leveling
off appears. This behavior is more pronounced at higher black loading, while it disappears below 10% vol-
ume loading. The effect is reversible provided enough time is allowed for recovery. The first explanation of
this phenomenon was that the low strain modulus was caused by the network formed of carbon black den-
dritic aggregates and that the decrease of the modulus with strain amplitude was due to the breakdown of
the carbon black structure at low strains. However, in the later 80s Medalia (1987) showed that it disagrees
with facts.

The triboelastic approach makes the Payne effect fully transparent and comprehensible. As was assumed
above, the elastic modulus at very small deformation is high since the spaces between the filler particles are
bridged by very short molecular chains, which are much stiffer than those in the full-length molecular net-
works. At the very beginning of extension, while the virgin structure of the composite is not yet consider-
ably changed, the system keeps its initial high modulus. However at higher stresses, macromolecules begin
sliding into the spaces between particles. The length of chains connecting particles rises and their elastic
resistance drops.
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Fig. 7. Calculated Payne effect at various filler volume fractions (indicated near curves).
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This effect is reversible. After unloading the system tends to the initial state under the action of the ther-
mal molecular motion. Since the phenomenon is of an interfacial nature, obviously, it is more pronounced
at higher filler loading and smaller particle sizes.

Fig. 7 demonstrates the Payne effect calculated through triboelastic modeling. The input data taken for
calculation specify commonly used HAF carbon black (DBPH = 1.0, ¢n.x =0.352, D,=30nm) and
hydrocarbon rubber (Lg, = 2.0 nm). Computed curves for various filler volume fractions agree well with
experimental data published by Boonstra (1979).

4. Discussion

As follows from the above investigation, the reinforcement phenomenon is manifested in two ways. In
the first one it is observed as an unexpectedly high initial modulus, arising from matrix stiffening within
closely spaced nano-sized particles. Under extension, the matrix layers between the particles start to lose
initial stiffness, due to molecular slippage from the filler surface into the gaps between the particles. This
process results in the fall of the modulus with the correspondent flattening tensile curve.

If the adhesive resistance is moderate (say, 7 is less than 2.0 as in Fig. 5), sliding spreads over the whole
length of the substrates (Fig. 1), whereupon the proper highly non-linear resistance of the spring joins to the
drag resistance already accumulated. This provokes a steep modulus upturn manifesting the reinforcement
due to finite chain extensibility. This case accounts for the S-shaped form of many tensile curves.

When the adhesive strength is sufficiently high (say, 7" is more than 2.0 as in Fig. 5), the breaking effort
comes about without bringing the whole spring into sliding. This case provides tensile curves with gradual
ascent due to gradual build-up of dragged resistance. In this case, the high breaking effort stems from the
finite chain extensibility as well.

So, the high breaking stresses should be referred to the capacity of the reinforced rubber to bring the
macromolecules in the state close to their limiting extensibility.

A conversion of the usual bulk rubber properties into a new much more stiff mechanical state, caused by
a nano-scale nature of rubber particulate composites, implies that widely used phenomenological relations,
which put mechanical properties of composites in direct dependence on those of the bulk matrix phase,
seem to be hardly justified from the physical point of view.

Verification of the predictive capacities of modeling has been carried out via comparison of theoretical
calculations with well-known experimental relationships, demonstrated by Alter (1956), Payne and Whit-
taker (1972), Smith (1977) and Fedors (1979), and revealed good agreement.

The model under consideration allows estimating of the field of its application as regards the filler con-
centration and the size of particles. In the former case, it may be assumed that the continuous media
mechanics approach becomes preferable, when the mean space between the filler particles is sufficiently
large, for instance, it exceeds the size of a macromolecular tangle that can be taken equal to 50 nm (Le-
blanc, 1995). Then, for HAF carbon black (¢nax = 0.325, D, = 50 nm) and / = 50 nm, Eq. (6) gives ¢ close
to 0.1. The upper limit of concentration is defined by the maximum packing capacity of the filler, i.e., by
Pmax, Which for common carbon blacks ranges between 0.2 and 0.4.

In the latter case, the minimum size of filler particles is that which becomes too small for producing soft-
ening segmental sliding. Obviously, this size should be somewhat greater the segmental length (1.5-2.5 nm),
i.e., about 5-10 nm. The upper limiting size can be found from Eq. (6) after substitution therein the critical
input data (4 =50 nm, @.x = 0.35, ¢ = 0.25). The maximum D, is found to be equal to 420 nm.

The experiments with reinforcing of carbon black filled non-cross-linked rubber, performed by Leblanc
(1995), demonstrated the leading role of the carbon black-rubber complex originating within the compound
during its preparation and showed that the modulus of this complex is at least three times higher than that
of gum rubber. Hence, in analyzing the reinforcement problems, it would be more properly to assume that
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carbon black reinforces not the rubber network but strictly the rubber molecules without regard if they are
cross-linked or not.

Microstructure investigations performed in the past few decades draw attention to the fact that the struc-
ture of carbon black-rubber blends on nano-level is far from theoretical random distribution. Pouchelon
and Vondracek (1989); Reichert et al. (1993), Cai and Salovey (2001); Yatsuyanagi et al. (2001) paid atten-
tion to a strongly stressed inhomogeneity of filler distribution in the virgin carbon-black-filled samples.
Their structure looks consisting of rather densely packed particles and areas completely free from them.
This peculiarity is unlikely a shortcoming of the mixing process. The appearance of such integrated
meso-structures, called supernetworks, is thought to be a spontaneous process.

Seemingly, the model examined in this paper can assist in the comprehension of the super-network for-
mation. The accidental coalescence of two carbon black aggregates during the mixing process joins them by
short polymer chains and transforms into a rather stiff object, which cannot be broken thereafter by weaker
mixing stresses. Next aggregate can adhere to this pair in the same manner and so on. Mixing stresses cease
the process of unbounded agglomeration bringing it to some equilibrium state.

The model considered is not adjusted to describe temporal phenomena, such as stress relaxation and
creep. This drawback seems to be remediable under the assumption that the bond strength depends on
the rate of the interface sliding. The search in this direction will be explored further.

5. Conclusions

A refined version of the triboelastic model developed earlier has been offered. It demonstrates the rein-
forcing and softening structural mechanisms governing the complicated mechanical behavior of particulate
rubbery composites.

The reinforcement phenomenon, investigated in terms of the triboelastic approach, takes account of the
finite extensibility of highly non-linear elastic rubber molecules, the degree of adhesive bonding between
rubber and filler particles, the capacity of rubber molecules to overcome adhesion under stress and move
along the rubber-filler interface.

The approach proposed enables one to follow the microscopic structural changes beginning with a virgin
state of a system and ending in its failure.

It is shown that there are two different sources of reinforcement, one acting in the initial stage of model
loading and the other-prior to failure. The initial high modulus of the composite arises due to the fact that
the densely packed nano-particles are bridged by the short molecular chains that are much stiffer than the
full-length molecular networks. The high non-linear resistance of the strongly stretched rubber molecules
just before their breakdown causes the next reinforcement manifestation observed as an upturn on the
stress-strain curves prior to sample failure.

Verification of the predictive capacities of modeling has been carried out via comparison of theoretical
calculations with well-known experimental relationships and revealed a good agreement. The bounds of the
triboelastic approach concerning both the size of filler particles and the filler volume concentration agree
well with those observed experimentally.

Formation of filler-matrix supernetworks is regarded as a phenomenon of spontaneous agglomeration of
nano-particles having higher stiffness.
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